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Study of rarefied shear flow by the discrete 
velocity method 

By JAMES E.  BROADWELL 
TRW Space Technology Laboratories, Redondo Beach, California 

(Received 30 December 1963) 

The application of a simple discrete velocity model to low Mach number Couette 
and Rayleigh flow is investigated. In  the model, the molecular velocities are 
restricted to a finite set and in this study only eight equal speed velocities are 
allowed. The Boltzmann equation is reduced by this approximation to a set of 
coupled differential equations which can be solved in closed form. The fluid 
velocity and shear stress in Couette flow are in approximate accord with those 
of Wang Chang & Uhlenbeck (1954) and of Lees (1959) over the complete range 
of Knudsen number. Similarly, the Rayleigh flow solution is remarkably like 
those found by other investigators using moment methods. 

1. Introduction 
In  elementary kinetic theory the molecules are assumed to move in only three 

(mutually perpendicular) directions and at  constant speed. It is well known that 
the expyessions for the equation of state and for the transport properties that 
come from this simple model are surprisingly similar to those derived from the 
most elaborate analyses. This outcome suggests that the same idea be applied in 
the study of rarefied gas motion, i.e. that the molecules be restricted to a finite 
set of prescribed velocities with the fluid motion being achieved, of course, by 
non-uniform distribution of the molecules among the allowed velocities. 

This approach is also suggested by a common approximation in radiative 
transport problems, namely the assumption that radiation travels only along 
discrete rays, an approximation which reduces the governing integro-differential 
equation to a coupled set of differential equations (Chandrasekhar 1960). The 
application of such a procedure to the Boltzmann equation has been mentioned 
(Krook 1955; Gross 1960) but seems not to have been pursued. 

This paper describes the low Mach number Couette and Rayleigh flow of a gas 
in which the molecules move in only eight directions and at constant speed. As 
is implied above the aim will be to obtain solutions of the Boltzmann equation 
for this gas and thus to describe these flows at  all Knudsen numbers. 

2. The discrete velocity model 
The Boltzmann equation may be written in the form 
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in which f is the distribution function depending on the time and space variables 
t ,  x, y, z and on the molecular velocity v with components u, v, w. The rate of 
change off due to collisions, (af/at),, is written as the gain minus the loss, G - L. 
Now if the molecules occupy, between collisions, a finite set of cells located a t  vi 
in velocity space, equation (1) can be written 

in which Ni is the number of molecules per unit volume with velocity vi. 
Before evaluating (Gi - Li) for eight cells, consider as a simpler example the 

two-dimensional gas lying in the (u, v)-plane with the four velocities, of magnitude 
C., sketched in figure l (a) .  The rate of change of N,, for instance, due to collisions is 

FIGURE 1. Collisions in a two-dimensional gas. 

determined as follows. Loss of molecules from cell 1 occurs only when these 
molecules collide with those in cell 4, for collision with occupants of cells 2 or 3 
results only in an exchange of cells (see figures l ( b )  and l (c ) ) .  Thus the loss from 
cell 1 can be written 

L, = v,S, N, N4 = 3CX, A7, N4, 

where vT is the relative speed, equal to 2c, and S, is the effective collision cross- 
section, i.e. the cross-section which deflects collision partners from cells 1 and 4 
to 2 and 3. These same arguments show, of course, that  molecules are thrown 
into cell 1 from collisions 2-3; therefore 

G, = 2CS, N, N3 

and aN1 = 2CS,(N,N,-N,N,). (=Ic 
The expressions for the other cells can be written in the same way. 

Now consider eight velocity cells symmetrically placed in the eight quadrants 
as shown in figure 3. The magnitude of the veIocity is again C and q = El33 is the 
velocity component along the co-ordinate axes. With this arrangement (Gi - Li) 
in equation ( 2 )  can be determined as follows. 

Begin with cell 1.  To find the rate of change of Nl due to collisions we must 
first determine which of its possible collisions cause a net loss or gain from cell 1 
as distinguished from those in which the collision partners simply exchange cells. 
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Refer to table 1 in which the signs of the velocity components are listed. Molecules 
may jump only between pairs of cells in which there is the same combination of 
signs for u, w, and w. Thus the collision 1-4 -+ 2-3 is possible and effective but 
the collision 1-2 has no effect. 

The collisions in which Nl is depleted are: 

1-4 + 2-3 1-6 + 2-5 1-7 + 3-5 
1-8 -+ 2-7 1-8 + 3-6 1-8 -+ 4-5 

5 6 

8 

FIGURE 3. The eight-cell model. 

Cell ... 1 2 3 4 5  6 7 8 

u - + -  + -  + - +  + + -  - + + -  - 
W + + + + -  - - - 
v 

TABLE 1. Sign of velocity components. 

and the rate of loss, L,, is 

L, = v," X:(Nl& f N1 fl6 f f l1  N,) f u," fl,b (N1 Ns) 7 

where the superscript a refers to the relative velocity and effective cross-section 
of collision partners diagonally opposed on the faces of the velocity cube in 
figure 2 and b to those on the cube diagonals. 

Assume now that the molecules are hard elastic spheres. Then the scattering 
from a collision 1-8, for instance, is symmetrical and the molecules are equally 
distributed to 3-7, 3-6, and 4-5. Therefore the rate of addition to cell 1 is 

GI = $ X:(N2 N3 + N2 N5 f N3 N5) + 8.; X:(N2 N7 + N3 N6 + N4 N5) * 

26-2 
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The relative velocities are given by 

v: = 2($)4E,  v,” = 2c. 

The effective collision cross-sections are determined as follows. Consider first 
an encounter of the kind 1-4, which takes place in the w = const. plane, as 
sketched in figure l (b ) .  The question is what fraction of those molecules that 
collide should be assigned to cells 2 and 3 (with the others being returned to 
1 and 4) .  Since the scattering has circular symmetry the most reasonable 
assumption is that half of the colliding molecules are deflected, i.e. that 

82 = $8, 

where S is the mutual collision cross-section. The corresponding assumption of 
symmetrical scattering for collisions such as 1-8 leads to the result 

s,b = $S. 

The flows to be considered are independent of x and are symmetric about the 
plane w = 0; therefore 

N, = N5, N2 = N6, N3 = N,, N4 = N8. 

Making use of these conditions and dividing G, and L, by the number density, n, 
we get 

1 
(%)c = (G,-L,) = ( i + ( ~ ) : ) c ~ n ( ~ , n , - n , n , )  = 28(n2n3-n1n4),  ( 3 )  

where 

and ni is the fraction of molecules in cell i .  
It will be convenient to have an expression for 8 in terms of C and the mean 

free path in the undisturbed gas, A. In  the undisturbed equilibrium condition 
all the N’s are equal; hence the collision rate of all the molecules of cell 1 ,  for 
instance, is given by 

8 = $ ( l +  (3):) ESn, 

$ = E X [  2/36( Nl N2 + Nl N3 + N1 NJ + 2 ( $)* (N1 N4 + N1 N6 + N1 N7) + 2N1&3] 
= (6133 + 6($)4 + 2)CXN? = 10*37cSN?. 

Then the collision frequency per molecule, CT, is 

and 

and therefore 

= 0-70E/A. 

It is clear that 0 could be evaluated for other intermolecular force laws but the 
necessary, somewhat laborious, calculations have not yet been made. 
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Anticipating the application of equation ( 2 )  to low Mach number Couette and 
Rayleigh flow, let us divide that equation by the number density, n, assumed 
constant. Then making use of equation (3) and corresponding expressions for 
the other cells, we get 

an an 

an, an, an, - + q - + q -  = 28(nln,-nn,n,), 

-- a n ~  q + + q L  = 28(n,n,-n1n,), 
at ax ay 

at ax ay 
an, an, an, -- q - - q -  = 28(n1n4-n,n,), at ax ay 

Several general features of these equations are worth noting. First, when they 
are multiplied successively by the collisional invariants, m, mui, mui (m is the 
molecular weight) and summed, the right-hand sides vanish, a consequence of 
the fact that the collisions sketched in figure 1 conserve the number of molecules 
and satisfy the equations of motion. (Energy is automatically conserved since 
the speed is constant.) 

The equilibrium condition is 
n, n4 = n2 n,, 

a remnant of the general equilibrium condition 

f (v9.f (v2 = f ( V l ) f ( V d  

If  the ni’s are independent of x and y it is easy to show with the help of equations 
(4a)-(4d) that the H function, defined by 

H = xnilnn,, 
i 

obeys the equation 
dH 
- = 28(n,n,-n,n,) (lnnln4-Inn,n,) dt 

and hence 

as in the exact equation. 

dH - < o  dt 

3. Couette and Rayleigh flow equations 
Now consider the above gas to be contained between two plates moving 

parallel to the (x, 2)-plane or adjacent to one such plate and seek a solution to 
equations (4a)-(4d) in which the density is constant and the fluid velocity V 
is zero. 

Then, since V = 2 nivi, 
i 

n1+n5+n2+n6 = n,+n,+n,+n, = 3, 
and, from the symmetry about w = 0, 

nl+n, = n,+n, = $. 
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These relations make equations ( 4 b )  and (ad ) ,  say, superfluous and allow the 
others to be written 

when the terms depending on x are dropped. These are the equations which in 
the present approximation govern Couette and Rayleigh flows. It is clear that 
they can approximate the behaviour of a real gas, if at all, only when the plate 
speed is small relative to C. In fact, if the wall speed exceeds q the model breaks 
down completely. 

It may be of interest to note that, when the eight-cell discrete velocity approxi- 
mation is applied to the Krook approximation to the Boltzmann equation 
(Broadwell 1963), equations identical in form to equations (5u)  and ( 5 b )  are 
found to govern Couette and Rayleigh flows. 

4. Couette flow 

equations (5u)  and ( 5 b )  can be written 
Consider the steady Couette flow sketched in figure 3. For this problem 

= a( -n,+n,) ,  ( 6 b )  dn3 
dy” 

where y* = y /d  and a = ed/2q .  
Y 

Sd 
- tu, 

4 

_ -  ___- 

- 7 

- -Id tu, 
FIGURE 3. Couette flow. 

When the reflexion from both walls is diffuse and n, = n5, nz = n6, etc., the 
boundary conditions are 

P 2 [  - n3(8) + %d*)l/dn3(&) + na(4)l = - 4v,,, 
q2[ - n,( - *I +nz( - $)1/4[n,( - 4) + nz( - 411 = i u w ,  

where ri ,  is the difference in the wall velocities. These equations state that the 
average 2-component of velocity of the molecules leaving the upper wall is 
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- QCL at the upper wall and that of the upward flowing particles is +tL, at  the 
lower wall. Then, since n,+n, = n3+n, = 4, 

nl( - 9 )  = &( 1 - q$q),  n3(&) = &(l + tjw/2q). 
Solutions to equations (6a )  and ( 6 b )  satisfying these conditions are 

From these 'distribution functions' the fluid velocity in the x-direction, U ,  
is found to be 

a u = c ui n.i = 2q[ - ?Z1 + ?b2 - n3 + n,] = q[ 1 - 4(n1 + na)] = - -__ uw?J*, 
i (a+ 1)  

( 7 )  
and the shear stress, pyx,  is given by 

p y x  = p ui 21i ni = 2pq2[ - n, + n2 + n3 - n,] = 4pqy - n, + n,] 7 

Defining the viscosity, ,u, by pyx/ (dU/dy f ,  we have from equations ( 7 )  and (8) 

,ii' = pqd/2a = pq2/8 = $(I + &-)-lpC/Sn, 

independent of the degree of rarefaction. With the use of the relation 8 = 0*70C/h, 
derived above, p can also be written 

p = 0-48pCh. 

It seems reasonable, especially after having found this expression for the 
viscosity, to say that the solutions for the eight-cell model should be compared 
with those of a real gas having a mean thermal speed equal to C. This assumption, 
which is also the usual one in elementary kinetic theory, will be made throughout 
the paper. Accordingly, the above expression for ,u is %o be compared with the 
classical expression : 

,U = 0.499pEA. 

The fractional slip velocity, 2AUlUw, defined by 

ZAU/U, = l/(a+ 1) = (0*61d/h+ 1)-l. (9) 

Lees (1959) found, for Maxwell molecules, 

2AU/Uw = (0-5d/h+ l)-l. 

In  this paper Lees made use of the Maxwell integral equation of transfer or 
moment equation (Maxwell 1890), but departed from the usual procedure of 
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representing the distribution function, f ,  as a polynomial in the velocity com- 
ponents. Instead, he expressed f in terms of a number of arbitrary functions of 
space and time which were determined from the moment equation. Lees’s 
expression and equation (9) are shown in figure 4 together with the well-known 
results of Wang Chang & Uhlenbeck (1 954) for Maxwell molecules. 

Next, the ratio of the shear stress to the free molecule value, pyx/(pyx)f.m., can 
be found from equation (8) to be given also by 

PJ(PyJf.rn. = I/(a + 1) = (@61d /h  + l)F1- (10) 

Similarly, Lees’s expression is 
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FIGURE 4. Slip velocity and shear stress as a function of  Knudsen number in Couette flow. 
--__ , pvz, Wang Chang & Uhlenbeck; . . . ., pvx and 2AU/U,, Lees; ----, 
2hU/U,, Wang Chang & Uhlenbeck; -, equations (9) and (10). 

In figure 4 the Wang Chang & Uhlenbeck values are compared with these two 
equations. Equation (10) lies below those of the other investigators at large d l h  
because the value for the free molecule shear stress is given incorrectly by 
equation (8)-it is approximately 15% too large. The shear stress itself is in 
good agreement with the other values at large d / h .  

Finally this simple solution allows the clarification of a point not related to 
low density effects, namely a simple description of the kinetic origin of the stress, 
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pZu (see figure 5 ) .  Almost every text-book dealing with viscous fluid mechanics 
presents the well-known discussion of the origin of pus: molecules from below the 
plane A-B carry a deficit of momentum upward, etc. None, to the author’s 
knowledge, explain pxu.  

Consider the molecules crossing plane cxrb from right to left. These are molecules 
with velocities v, and v3. Molecules of class 1 come, on the average, from a 
region of smaller y and hence smaller U than class 3 molecules. In  a region of 
small U ,  n, and n3 are relatively large and, of course, in a region of higher U 
these velocities are relatively depleted. Thus more molecules of class 1 cross a-b 
than of class 3 and hence positive y-momentum crosses a-b from right to left. 
The same argument shows that negative y-momentum flows in the opposite 
direction across a-b and thus an effective positive stress pSu acts on a-b. 

B AP 
a 

FIGURE 5 .  The kinetic origin of shear stress. 

5. Rayleigh flow 
Let the plane y = 0 adjacent to a semi-infinite region of gas be suddenly set in 

motion in its own plane with velocity i&, assumed small relative to the mean 
thermal speed i?. Under these conditions the flow is governed by equations (5a )  
and ( 5  b )  rewritten here : 

( 1 l a )  

Recall that n2 and n4 are determined by 

n,+n, = n3+n4 = $. 
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The gas is initially at rest so that 

If the reflexion from the plate is diffuse, then the average x-velocity of the 
molecules moving upward from the plate is U, and 

Making use of (n,+n,) = $, we find as before 

n,(O, t )  = - U,lq).  

No condition may be put on n3 at y = 0. From equation (5a) 

Substituting this expression for n3 in equation (5 b )  we find 

Equation (14) is the telegraph equation and is just the equation which Lees 
(1959) found, by the Maxwell moment method, to govern the fluid velocity, U ,  
and shear stress, pyx,  in this problem. In his equation the isothermal speed of 
sound, J(RT),  appears in place of q. Using the equations 

u = d 1 -  4(n, + %)I, = 4PqY + %I, (15L (16) 

it is easy to show that in our case, also, U and pyx  are governed by equation (14). 
This surprising outcome, that a moment method and the present discrete 
velocity model lead to precisely the same governing equation, is presumably an 
illustration of the statement by Krook (1955), in connexion with radiation 
problems, that the two approaches are equivalent. 

While, as stated, U and p y x  satisfy equation (14), a solution for these quantities 
cannot be obtained directly because their boundary values are not known.? 
The boundary and initial conditions on n,, equations (12) and (13), however, 
determine a unique solution for this quantity; it  may be found in Carslaw & 
Jaeger (1953).Q We may anticipate from the form of equation (14) that the 
solution will have the behaviour which we expect for this model, i.e. that a dis- 
continuity will propagate from the wall a t  speed q but that for times large com- 
pared to the collision time the discontinuity will become extremely small and 
the solution will have a diffusive character. 

Define 
= et = 0.70zt/h, = (e/q)y = 0.703$#. 

t Lees makes use of a relation between pvr and U on the wall to obtain his results; the 
complexity of the boundary-value problem is such, however, that only an approximate 
solution is possible. 

$ The author is grateful to Prof. Lees for pointing out this solution. 
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In  these variables the solution for n, is 

where H ( r - 7 )  = 1 when r > 7 

= 0 when r < 7, 

and I, is the modified Bessel function of first kind of order one. Now n3 can be 
found from equation (1 1 a )  by differentiation; the result is 

Therefore the solution is complete and the fluid velocity and shear stress can be 
determined from equations (15) and (16). In  the following discussion these 
quantities are compared with those of Yang & Lees (1956), Lees (1959), and 
Gross & Jackson (1958). In  the latter analysis, a moment method was applied 
in which the distribution function was expressed in half range polynomials. 

station n, retains its initial value, 9, until the 
time r = 7; then it jumps to the value 

Notice first that a t  a given 

$[I - (U,/q) e-4.1. 

Since n3 begins to change smoothly at r = 7,  

and a discontinuity in U propagates from the wall with velocity q (in t ,  y 
co-ordinates) but with a magnitude that decays rapidly beyond a few mean 
free paths from the wall. The origin of the discontinuity is, of course, in the single 
molecular speed and it would be instructive to see the influence of more allowed 
speeds on the initial development of this flow. 

Because of the complexity of the general solution it is useful to derive approxi- 
mate expressions for n, and n3 and thus for U and pUr for short and long times. 
The asymptotic expansions of the modified Bessel functions in Carslaw & Jaeger 
( 1953) provide the required approximations. 

For short times 

from which it can be seen that the initial gas velocity at  the wall is 4Uw, the 
correct limiting value. In  figure 6, velocity profiles given by equation (20) at 
several fixed times are shown together with one from Lees. As mentioned above, 
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in the latter solution the wave propagation velocity differs slightly from 3 - k .  
Also, the magnitude of the velocity discontinuity on the wave front is given by 

U j U ,  = Q45e-05577, 

an expression which again differs little from equation (19). Both these solutions 
are similar in form to that derived from the Grad thirteen moment equations by 
Yang & Lees. In particular, in that solution also a rapidly decaying discontinuity 
in velocity propagates from the wall during the initial period. Quantitatively, 
however, there are considerable differences; for example, their initial gas velocity 
at the wall is Q-373U,. 

I I I I I I 

UIU, 

FIGURE 6. Velocity profiles in Rayleigh flow. ---- , Lees; --, equation (20). 

In the Gross & Jackson solution, two step functions in flow velocity moving 
at different speeds appear initially. The gas velocity adjacent to the wall is also 
gU, initially but rises much more rapidly than the present solution predicts. 
The existence of the two discontinuities, which would be present in a discrete 
velocity model with the appropriate velocity cells, is further indication of the 
similarity between moment and discrete velocity methods. 

The limits of the integrals in equations (17) and (18), T and 7, make it more 
difficult to find the behaviour ofn, and n3 for long times. If, however, we allow 7 
to become large at constant 7, we can replace Il and I; by their asymptotic 
expansion for large argument and obtain the behaviour of the solution in this 
limit. To order T - B  the result for the velocity is 

(21) u/u, 2 1 - 7&[(1$- 7 ) ' d  -2~(3 + 97 -I- 3y2 $. r 3 ) T d ] ,  
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an expression which is again similar in form to that found by Yang & Lees. In  
figure 7, the values of the velocity at = 0 given by this equation, and by 
equation (20) for short times, is compared with the prediction of Lees. 

To order 7-4 the Corresponding expression derived by Gross & Jackson is 

U / U ,  2 1 - ;TT-$[( 1.1 + 0 . 9 8 ~ )  T-B - 0.26 e - 5 . 6 5 T ~ - * ] .  

Thus the present solution contains part of the correction to the classical Rayleigh 
solution predicted by Gross & Jackson. It will be interesting to determine 
whether a discrete velocity model with more cells will yield a solution containing 
the thin layer adjacent to the wall given by the exponential term in the last 
equation. 

L 

! I I , ,  I , , I  t , I  

0.1 0.2 0.4 0.6 0.8 1 2 4 6 810 20 40 6080100 
7 

FIGURE 7. The time dependence of the gas velocity at the wall in Rayleigh flow. 
-, Lees; ---, equation ( 2 0 ) ;  -. -. , equation (21). 

The preceding discussion has dealt only with the flow velocity; in general the 
shear stress given by equation (16) compares in a similar way to that of the other 
investigators and an extensive comparison will not be made. Briefly, the skin 
friction coefficient can be related to the velocity at the wall if n3 is eliminated 
from equations (15) and (16). The relation can be put in the form 

1 - U(0,  t)/Ci, = c, UJ2q = 3*c, uw/2c, 

1 - U(0, t)/U, = c, UJC. 

where Cf = p,,l&pU$. The corresponding expression of Lees is 

In  conclusion it may be said that the eight-cell discrete velocity model provides 
a simple physical picture of many of the Iow density effects in low Mach number 
shear flow. It is more difficult, in the absence of exact solutions, to evaluate the 
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quantitative results. There seems to be no a priori reason, however, to think that 
the method is less accurate than moment methods, for instance. Furthermore, 
the model leads to equations that are readily integrated by machine. Pre- 
liminary machine solutions describing the initiation and internal structure of 
shock waves and compressible Rayleigh flow have been obtained for models 
with up to forty molecular velocities. The study of these flows is continuing, as 
are attempts to clarify the relation between moment and discrete velocity 
methods. 

The author is pleased to acknowledge the help of Mr Frank Vogenitz in the 
mathematical aspects of the analysis. 
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